Time series model fitting via Kalman smoothing

and EM estimation in TimeModels.]jl

Gord Stephen

Last updated: January 2016

Contents

1 Introduction

1.1 Motivation and Acknowledgements . . . . . . . ... ... ... ...
1.2 Notation . . . . . . . . . . e

Kalman Smoothing

2.1 Prediction and Filtering . . . . . . .. . ... ... ... ... .. . ...,
2.2 Smoothing . . . . . . ..
2.3 Lag-1 Covariance Smoother . . . . . .. .. .. .. ... ... ... ...

Linear Constraint Parametrization

3.1 System Matrix Decomposition . . . . . . .. .. ... oL
3.2 Linear Constraint Formulation . . . . .. ... ... ... ... .......
3.3 System Equation Representation . . . . ... ... ... ... ........

Expectation-Maximization Parameter Estimation

4.1 Basic Log-likelihood Derivation . . . . . .. .. ... ... ... ...
4.2 Log-likelihood Derivation with Zero-variance States or Observations . . . .
4.3 Solving for pa . . . . . ..
4.4 Solving for pp . . . . . . L
45 Solvingforpg . . .. .. ...
4.6 Solving for po . . . . . .
4.7 Solving for pp . . . . . ..
4.8 Solving for pr . . . . . . .
4.9 Solving for N
4.10 Solving for pg . . . . . ..

DN DN

[S1 K S; BTSN B~ W w W

0 ~1



1 Introduction

1.1 Motivation and Acknowledgements

While the expectation-maximization (EM) optimization approach is well-recognized in
time-series analysis texts as a useful method for obtaining local maximum-likelihood (ML)
parameter estimates of linear state-space model system matrices, avoiding the need to
resort to general gradient-free optimization techniques, the procedure is generally only
described as a means to generate maximum likelihood estimates of full system matrices.

In many practical cases, however, most elements of a state-space model’s system matrices
are set deterministically, with only a small subset requiring estimation (one notable example
of such a case is the fitting of ARIMA models). In such situations, allowing all elements
of the system matrix to vary during the fitting process is clearly undesirable.

A common solution to this challenge is to simply disregard analytical knowledge of the sys-
tem and fall back on gradient-free nonlinear optimization techniques to compute maximum-
likelihood estimates for the unknown parameters. This can be avoided, however, by
parametrizing system matrices as reshaped linear transformations of smaller parameter
vectors, then applying the EM estimation algorithm to the resulting system equations
to generate ML estimates for the parameter vectors alone. This model fitting approach
was first outlined by Holmes and implemented as the MARSS R package (https://cran.
r-project.org/web/packages/MARSS/index.html).

This document re-derives these techniques and describes their implementation in the TimeM-
odels.jl Julia package (https://github.com/JuliaStats/TimeModels.jl). The results
presented here are based very heavily on Holmes’ original derivations (available at https://
cran.r-project.org/web/packages/MARSS/vignettes/EMDerivation.pdf), with some
gaps in derivation steps filled, and changes to notation and the treatment of external sys-
tem inputs that will be more familiar to readers approaching state-space modelling from a
control-theory background.

Like TimeModels.jl, this document is very much a work in progress. In particular, general
contraints for solvable systems (while usually alluded to in the various derivations) are not
yet detailed explicitly. The reader is instead referred to section 10 of Holmes’ derivations,
which provides a relevant summary of such constraints, albeit with the different notation
and external input expressions mentioned above. In some cases where derivations are
identical to those given by Holmes (notational differences aside), only the final results are
given.

1.2 Notation

We define a general multivariate state-space process with Gaussian noise according to the
following notation:

= A 1x—1 + Bioqug—1 + -1, vim1 ~N(0,Vi1), t=2...n



yr = Crxy + Dyug + wy, thN(O,Wt), t=1...n
w1 ~ N (21, PT)

Here, x; € R™ is an unobserved state vector, y; € R™ is an observation vector with
possible missing values, and u; € R™ is a deterministic input vector. A; is the state
transition matrix, By is the control input matrix, and V; is the state transition noise
covariance matrix. C; is the observation matrix, D; the feed-forward matrix, and W; the
observation noise covariance matrix. Each system matrix can be time-varying. 9 and Py
are initial state value and covariance conditions needed to initiate the recursive process
evolution.

2 Kalman Smoothing

Given the observation time series y (possibly containing missing values), the input time
series u, and values for the system matrices, we can applying Kalman smoothing to compute
the probabilistic distribution of the latent state time series x.

After Kalman smoothing, the estimated latent state time series values will be distributed
as xy ~ N (&, P;). This distribution is obtained by taking into account all observations
in y. Obtaining these estimates also requires computing and storing a predicted state
distribution x¢4q1 ~ N(a:%_i_l, Ptt+1), based only on observations y; . .. y.

2.1 Prediction and Filtering

z! 11 P} 1, the Kalman gain matrix Ky, and the marginal log-likelihood d;;; of the observed
series given the system matrices can be computed via forward recursion starting from initial
conditions z¥, Py:

e =y — Cxy " — Dy
vy = Ptel +wy
K, = AP tols !
O = e?Z[let + In | X
:L‘Lrl = Atxi_l + Byuy + Ke;
Pl = AP A - K C)T + W



2.2 Smoothing

Now, given ;U’fl, Pttfl, K;, and E;l, smoothed values Z; and P; can be computed via
backwards recursion, with initial conditions r;, = 0,, and Ny, = 0y 5, :

Lt = At - KtCt
re—1 = sz;lét + L;‘Frt
_ Ty—1 T
N1 =Cy X, Cy+ Ly NiLy
B=a; "+ P

P=pP = PN P

2.3 Lag-1 Covariance Smoother

The EM parameter estimation procedure described below also requires P;;_1, the lag-1
state covariance between x; and z;_1. This can be computed by smoothing a corresponding
“stacked” state space model given as follows:

~ Tt
Tt =
Tr—1

- At Opona | 5 B ~ Vi 0n, .,
S R e R PR

Inz Onzynz Ng,Ny Nz, Ny Onzynz

Ct = [Ct Ony,nz]

By = Ay 151+ Biqug 1+ 01, 01 ~ N(0,V,_1)
Yt = ét[it + Dtut + Wt, Wy ~ N(O, Wt)

The resulting Z; state covariance ]5t will be a block matrix of the form:

Py Pt,t—1:|

P =
! [Pt,tl Py

from which P;;_1 can be easily extracted.



3 Linear Constraint Parametrization

3.1 System Matrix Decomposition
To parametrize and estimate the time-dependent system matrices, we first factor them

into components that are either time-independent and parametrized, or time-dependent
and explicitly defined:

Ay = Ay Asly, Asi, By = ByBalp,, Vi = GiQlp, GY
Oy = C14Cslp.Cst, Dy = D1y Dalyy, Wy = HiR|,, HE
where pa, pB, PQ, Pc, Pp, and pr are parameter vectors to be estimated. We require that

Qlp, and R|,, be invertible in addition to being valid covariance matrices (symmetric and
PQ PR
positive-semidefinite).

3.2 Linear Constraint Formulation

We formalize the linear constraints on the parametrized matrices as:

vec(Z|p,) = fz+ Dzpz

where fz and Dy represent the constant and parameter coefficient terms making up Z.

3.3 System Equation Representation
We define ®; = (G} G;)~!GT such that:
O g2y = Py A w1 + P Beoqug1 + @ 1Gro1gi
O 1y =P 1 A1 + P By w1 + g1

Using Kronecker product identities, we can now represent the general system equations in
terms of the parameters to be estimated:

vee(Py_qxy) = vee(Py_1Ai_124-1) + vee(Py—1 By—q1ui—1) + vec(qi—1)

Using Ab = vec(Ab) = (b7 ®@1,,,)vec(A), where A is an n, x np matrix and b is a length-n,
vector:

Q2 = Dy_yvec(As—12¢—1) + Pr_1vec(Bi_1ui—1) + qi—1



Oy gy = Bpq(z); @ L, )vec(Ar—1) + Br1(uf_; @ I, )vee(Bi—1) + gi—1
Oy qxp = Bpq (2] @1, )vec(Ar—142|p, Azi—1) + Pr_1 (ui_ @1, )vec(Bi—1Balpy) + qi—1

Using vec(ABC) = (CT @ A)vec(B):

Oy 12y = By (x) ®I, ) (A ®Ay—1)vec(Aslp, ) +Pi—1 (u/_,®L,, )vec(Bii—1Balp, ) +qi-1

Using vec(AB) = (I,,, ® A)vec(B) where B is an ny, X n. matrix:

11y = Oy (2 ®L, ) (A5 ®Ay_1)vec(As|p, )+ i1 (uf @1, ) (In, ®Bre—1)vec(Ba|py ) +ai—1

Using the linear constraint definition vec(Z|,,) = fz + Dzpz:

Oy qxp = B (2] 101, ) (AL, @A 1) (fa+Dapa)+®;_1 (vl @1, ) (1, ®B—1)(fa+Dppp)+qi—1

Finally, we can consolidate the deterministic elements by defining

far = (AL ® Ay_1)fa

Day1=(AL,_ 1 ® Ay 1)Da
fBt-1=(In, ® Biy—1)[B
Dpi—1 = 1,, ® Bi;—1)Dp

which results in

g2y = P (2 @1, (fas—1+Dag—1pa) +Peo1 (vl @1,,)(fBi-1+Dpi-1pB) +qi—1

The second system equation follows from the same process and gives:

S = (H/ H)™'H/
for = (C3 @ Cu)fo
D¢y = (C3y ® Cy) Do
fpi= (In, ® D) fB
Dp; = (I,, ® D1;)Dp
S = Sz ® L.,)(fot + Depe) + Ei(uf ® L.,)(fpt + Dppp) + 1t
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The parametrized initial state and error covariances are given similarly, as follows:

m =21 +¢ (~N(O,PY), Pl =JSJ"
r1 =20+ Js, s ~N(0,9)
Introducing the usual linear parameter constraints we get

21 = fog + Dyopy0, S = fs + Dsps

Like @ and R, S must be both invertible and a valid covariance matrix. Finally, defining
= (JTJ)"1JT gives

Mz = Haf + s = I(fz0 + Dyopgo) + s

4 Expectation-Maximization Parameter Estimation

4.1 Basic Log-likelihood Derivation

Given the parametrized system equations and taking errors to be normally-distributed,
the log-likelihood of the states and observations given the matrix parameters can be rep-
resented:

e =Pp17 — D1 (v ®Ln,)(fag—1+ Dag—1pa) — ®ro1(uiy ®L,,)(fBi-1 + Dpi—1pB)

e = By (we— (2, ®Ln,) far—1— (2] @10, ) Das—1pa—(ui_1®Ly,) fpi—1—(u 1®Ln,)Dps-1pB)

ft =Tt — (.Tt’T,l & Ing;)fAﬂf—l - (uzll ® Inm)vat_l
ar = (x?_l & Inz)DA,t—l
b = (uf_1 ©L,,)Dp 1

e = P 1(ft — apa — bipB)

m = Ewy — Ze(af @ 1n,)(for + Degpe) — Eu(uf @ 1,,)(fpe + Dpipp)
=Sy — (2 @Ly,))for — (xf ®1L,,)Degpe — (uf @1,,)fpe— (uf ®1,,)Dppp)

g=y— (z} ® L.,)fc: — (uf ® L.,)fp:
¢ = (z{ ®1,,)Dcy
b= (91, D,
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e = Z¢(9¢ — cepc — depp)

n

1 T 1 lem 1. 1 11,4, 1 n
LL_—Q;Q Qt_let—Q;Ith_ﬂ—z;nt R; ”t_ztz;lnmt’_zf §7le—5In|S|—2 In2r

For this and the following sections, it will be useful to define V,"} = & ,Q; !, &1, W, ! =
~ 1
E/R;7'Z;, and P =TS~ 'I. Expanding the above gives:
1o 1o
_ T{r—1
—LL=3 Z(ft +apa +bpp)” Vi1 (fe + atpa + bepp) + B tz:; In [Q¢—1]

t=2

+

N | —
(]

- 1 <&
(91 + ctpo + dipp) "W, (g6 + eope + dipp) + 3 > In|R,|
t=1

t=1

~—1 1 n

N =

4.2 Log-likelihood Derivation with Zero-variance States or Observations

We also need to account for the possibility that some state or observation rows are deterministically-
defined (with G; or H; having a one or more all-zero-valued rows), and thus do not make

any probabilistic contribution to the log-likelihood calculation and cannot be estimated via
maximume-likelihood methods. While the values of elements of GG; and H; can vary in time,

it is assumed their overall rows will remain consistently either all-zero or not-all-zero. There

is additional nuance needed in considering that errors introduced in non-deterministic state

or observation rows have the potential to propagate to seemingly-deterministic rows via

the A and C matrices. Holmes provides the full details of this derivation (along with ex-
planations for associated estimation limitations) and so for brevity only the broad strokes

are presented here.

Given an n, X n, selection matrix Il‘f that zeros out any rows that are all-zero in Gy, the

fully-deterministic states xg can be expressed as:

Zl)g = ngQ = Ig(A1$1 + Blul)
2§ =1§(Ayzy + (uf ®IL,)fe1 + (uf ®1,,)Dpa1ps)

Similarly:
2§ = T§(Aoxo + (uf ®L,) f2 + (u3 @ 1n,)Dp2pp)



Now, recursing on xo:

d __ yd T T T T
vy = I5(A2(Ar1z1 + (uy @1n,) fB1+ (uy @1n,)Dp1pe) +(uy ®Ly,,) f 2+ (uy ®1,,)Dp2pp)
28 = I§(AsArz1+(ud ®L,,) fp o+ Ao (u] @1, f1+((ud @1, ) Do+ As(ui @1, ) D 1)pE)

More generally, ¢ can be expressed via the recursion relations

d d 0
vy = L (A_12] + fBut—1 + Dby t—1PB)
Af =447, Ag =1,
T
féu,t = (ut ® Inz)fB,t =+ Atfgu,t—lv fgu,O =0
D*Bu,t = (u: ® Inz)DBﬂf + AtDEu,t—l’ D*Bu,O =0
With this recursion we will also need to account for the probabilistic and non-deterministic

components of the expectation of x1. Specifically, defining Igo as a selection matrix zeroing-
1

out non-deterministic rows in x{ (corresponding to non-zero rows in J):

2 = (I, - Iig)il + Iigm? = (In, — Iig)il + Iig(fx(f + Dyop0)

We can now consider the general log-likelihood formula with deterministic rows set to zero.
®;_ 1 will automatically zero out likelihood contributions from deterministic x; rows in the
process evolution terms, while Z; will do the same for gy in the observation terms and II
for the initial state 27. We can apply the x{ relation derived above to replace x;_1 and z;
in the process and observation terms respectively.

e =Py (s — Ap124-1 — By1ug—1)
e = Oy (xp — A1 (Lo, — I Dapq — Ay 118 21 — Byoquy—1)
e = Pr1(zr — A1 (In, — 1571)3%—1 - At—ll’il — Bi_1ug-1)

et = D1 (e — A1 (I, — If—1)1’t—1 - At—lI?—l(A:—Qx(l) + fgu,t—Q + D*Bu,t—QpB) — By 1us-1)

ne = Ei(yr — Cywy — Dyuy)
ne = Z(ys — Cy(I, — Iz — C 1wy — Dyuy)
ne = Ze(ye — Cr(I,, — If);rt — C’tzvf — Dyuy)
e = Ei(ye — Co(Tn, —I)wr — CI(AL 1Y + fhuy—1 + Dhuy—1pB) — Dity)



n

1 N 1 < 1< B 1 —
—LL = §Z€tTQt31€t + 3 Zln|Qt_1\ + 5277th U + §Zln|Rt|
t=2 t=1 t=1

t=2
1 1.1 1 n
£S5 —In|S|+ = In27
+58 ST SIS+ 5
From this point we can compute derivatives with respect to to-be-estimated parameter
vectors, and set the expected values (expectation) to zero (maximization). Solving for all
parameters and using them to recompute expected values gives a new model with improved

fit log-likelihood. This process can be repeated iteratively until the log-likelihood value
converges sufficiently.

4.3 Solving for py

Same for finite-variance rows, doesn’t work for fixed rows. Final result is:

n
—

pA = (ZD,—L Tio1x) 1®Qt )Da t> ZDAt vec Qtftfﬂt 1) (waL®Qt)fA,tfve0(QtBtutitT_1))
t=1 t=1

4.4 Solving for pgp

We start by taking the derivative of negative log-likelihood with respect to pp. Using the
matrix derivative rule %QTCCL =2a'C:

n
T T p—1
- S g Bl
oer d Py T
e —®; 1 (A1 1y 1 Dpyyo + (Ui ® 1n,)Dpt—1)
PB
577t — *
5pr = _‘:’tCtIgDBu,t—l
§(—LL) " -
5pB = Zet Q (I)t 1(At 1It lDBut 2+(Ut 1®InI)DBt 1 ZU?R_ CtIfD*Bu,t—l
t=2
5(—LL) .
op (21— Ay (Tn, = T8 a1 — A1 (Af 9wy + fhuy—o + DhyyopB)

10



—(u{_ @1, fBa-1— (uf_ ® Inz)DByt—lpB)Tf/t_l(At—lIglle*Bu,tf2 +(ui_ ®In,)Dp 1)

n
* * * Tixr— *
> (p— Ci(Tn, =Tz — CIF (A7 21+ [y y1 + Dpyy1ps) — Do) Wy 'CIIDg,
t=1

Taking expectations and setting F [6((271;1‘)} =0:

n

0=— Z (jt B At_l(Inac - I?—l)xt—l - At—lI?—l(A;(—?@? + fEu,t—2 + D*Bu,t—QpB)
t=2

—(u{_ @L,,) fBa-1— (U ® Inz)DByt—lpB)Tf/t_l(At—lIglle*Bu,tf2 +(ui_ ®In,)Dp 1)

n
~ * ~ * * Ti5,— *
- Z (9t — Ci(In, — If)a, — CIf (A7 20 + fBut—1+DBut—1PB) — Dyug)” Wi ICtI;tiDBu,t—l
=1

n

0=—> (& — A1(Tn, =T a1 — AT (A7 020 + fhuy o)
t=2

—(u{_, ® Inw)fB,t—l)T /

v%_l(At—llglle*Bu,th +(ui_ 1 ®1,,)Dpy1)
n
* Ter— *
+ > (AaIf Dy, opp+(ui &Ly, )Dpy—1pp) Vi (A Dy o+ (ui 1 ®1L,,)Dpy1)
=2

n
~ * oA * Ti5,— *
- Z (?Jt = Cy(In, — If)l‘t - CtItd(At—lfUl + fBu-1) — Dtut) W, 1CtIthBu7t—1
t=1

n
* T I—
+> (CI{D}, 1pB) Wi 'CA{Dy,,
t=1

n
0=- (JAUt — A1 (Tn, — Ig—l)ﬂft—l - At—lIg—l(A:—zi“? + ffau,t—z)
t=2

T, *
—(ui_1 ® L,)fBi-1) Vi 1(At*111£€l—1DBu,t—2 + (ui_1 ®1,,)Dpy1)
n

* Tor— *
+p5 Y (AeaTd  Dhy s o+ (ui @5y, )Dpy—1) Vi (Araf | Dy o+ (uf 1 ®1,,)Dpy1)
=2

n
~ * A * Ti5,— *
= (9 — Co(Xn, = Twy — CIF (A7 130 + fhu1) — Dow) Wy 'CI{ Dy,
t=1

n
* T3,— *
+Dis Z (Ca{DR,, 1) W 'CA{Dy, .
=1

For clarity we can define:

Ay = At—lIg—lD*Bu,tf2 +(ui 1 ®1,,)Dp 1

11



Aoy =d¢ — Ap—1(In, — I§—1)l‘t71 - AtﬂI?—ﬂA:—Q‘%l + f;_%u,t—2) - (UtT—l ®@1In,)fB -1
Asy = CI{Dp,
Aup =i — Co(Tn, — Iz, — CIY(A;_ 30 + fBug—1) — Drus

This gives:

n n n n
T -1 T T -1 T -1 T T -1
0=~ E Do Vi A +pp E AVi Aug = E Ay Wi Azt +pp E Az Wi Asye
=2 t=2 t=1 t=1

n B n 5 1
pp= (DAL A+ Y AL ag)
t=2 t=1 t

NE

ATV Bau+ Y AT W A
t=1

Il
V)

4.5 Solving for pg

The solution for pg is not general, but works in a wide range of special cases, most no-
tably when @ is a simple diagonal matrix of parameters, which when multiplied with any
arbitrary G; can serve most purposes. Aside from notational differences, the derivation is
identical to the one presented in Holmes, so for brevity only the final result is presented
here:

n n

~1
o= (Y DdiDar) > Dhvec(S)

t=1 t=1

—_— — —

_ T T T T AT T AT T T
Sy = Oz, +apx, A+ Az, —Tyuy_ By — Bioiwa 2, +Arxiix, A

N T pT T 4T T pT \aT
+A & uy By + Bioaw1Zy 1 Ay + Bioqw—uy_ By )@,

4.6 Solving for pc

The solution for pc is analogous to pa:

n n

— ~ —1 o — ~ -
po = (Z Dat(:ctx:@Rt)DC,t) Z Dg,t (Vec(Rtyt:L‘tT)—(azt:L‘tT®Rt)fc7t—vec(RtDtutig—))
t=1 t=1

12



4.7 Solving for pp
Finite-variance rows works as normal, with constraints

This derivation isn’t in Holmes:

n

n
_ -1 _
Pp = <ZDg,t(“:(g’lny)TRt(u:@Iny)DDJ) ZDB,t(U;,r@Iny)TRt (Qt*ctit*(ug—®1ny)fx4,t)
t=1 t=1

4.8 Solving for pg

pr is fully analogous to pg, and the same matrix property constraints apply.

n 1 n
PR = (Z DR,tD£7t> > D vee(T)
t=1 t=1
Ty = Ei(yy, + yex) C) + Cury) — gou) D] — Dywgyy " + Cyrg] €1
+Ct£LA‘tu;|—DtT + Dtut.’ftTCtT + Dtutu?D;r)E;r
4.9 Solving for p,o

Solving for Pa? is particularly messy given how often it appears in the log-likelihood equa-
tion! The derivation for the final result is very similar to the one used to solve for pp:

S(-LL) 1 6 7 .4 R 1 6 +.,.4
= - - —n; R -—¢&' S
2 ; o Qvet + 5 ; g +35 5%?5 ¢
§(-LL) <~ p,1 O n ) S
6 = €$Qt3157€t + anRt 1577% +€TS 15 5
Pf =2 P =1 P P
5 *
51%9 €= _(I)t—lAt—lltd—lAt—QIi?Da:? = —Pi10s5,
0 = d p* d .
5p 077t == _:‘tCtIt At_]-Ia?(l)D$(1) = _‘:'tA'?,t
1
1)
= —IID
(pr(l)g af
d(—LL " B n e -
(5p R ) - thTQtJfI)tﬂAE),t - ZntTRt 1:tA77t — gTS IHDIQ
e t=2 t=1

13



n n
=0=—> Ela]"Q i ®i185: =) Eln) Ry "By — E[]T ST TID,g
t=2 t=1

B[

Eler] = @-1(&e—Ap1 (T, — I )@ e-1— A1 Ty (Afo (T, —150) &1+ 150 (fo0+Dy9p10)) +fBug ot

D*Bu,t—QpB) - Bt—lut—l)

Eln) = Z4(n=Ct(Tn, —17) = CiI{ (AL (T, —T50) @1 +150 (Fo0+Dups0)) +F i -1+ Do 108) — Dite)

n
0=~ Z(it_At_l(Inz_Iffl)i]t_l_At_lItdfl( I*Q ((Inz _Izg)jl"’_:[i? (fx(f'f'Dx(l)px?))'i‘fEu,th‘i‘
t=2
x Ti-1
Dpyi—opB) — Bio1ui—1) V;_ 105,

n

- Z(Z)t_ct(:[nx —1)&,—CiIf(Ar_ (Lo, —Iig )& +Ig(1) (f20+D29920)) +fBut—1+Dhui—1PB) —Dyug) "
=1

%r—1 . T 5=l
Wi Az — (21— foo — Dypopan) Py Do

n
0=~ (& — Ar1(Tn, =T 1)Te1 — AaTi 3 (A7 o((Tn, — Loo)d1 + T fr0) + fus ot
t=2

n
D —2pB) = Botw1) "ViZ i Ase + ) (Aea T Al 510 Daopyo) VT 1 Ase
t=2

n

= (= Ci(La, ~1)2 = O (AT (T, =L0)81 150 f10) - Fu—1+ Dl g1pp) = Diue) "Wy Az
t=1

+ > (CIFA; T2 Dyopyy) "W, Ary
t=1

~ 1 ~ _1
—(@1 = f9) TP Dyg + (Dyopy0) PP Dyo

Agp = dr=Ara (T, =) 81— A By (A7 (T, _Ig?):%1+Ii?fx?)+f§u,t—2+D*Bu,t—2pB)_Btflutfl
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Asy = i — Ci(Tn, — 1) 3 — CIF (A7 ((Tn, —Igg)fﬁl +Iggfxg)) + fBut—1+Dput1—1PB) — Diw

n n n
0=-— Z AﬁT,tVt:llA57t + Z(A&tpx?)TVt:llA&t - Z ABT,tWt_lA7,t
t=2 t=2 t=1

n - . ~ 1 ~ 1
+ > (Arupyg) "W Ay — (@1 = f19) 'PY Dyg + (Dyopyo) ' PP Dy

t=1
n 5 n N ~ 1
Z(A@tpx?)TV;f:llA&t + Z(Altpx?)TWt_lA?,t + D.Z’(l) + (Dx?pm?)TPP Dac(i’ =
t=2 t=1

n n

- ~ ~ 1
Y AG VT A+ D> AW Ary+ (81— fr0) T PY Do
t=2 t=1

Transposing the equation and isolating Pa0:

n
T -1 T 1ir-1 T 50t
A Vi Asi+ Y AW Ay + D, Py ng))le =
=1

/N
o~
||M:
no

3

n
- . ~ -1
AJ Vi A + Z A7 W Agy + D;?PP (@1 — fao)
=1

-
[|

2

- > . = ~ -1 -1
Do = (Z AL Vit Asi+ Y AL W Agy+ D PY Dz?) X
t=2 t=1
n B n ~ -
( ALV g+ 3 AT W A+ DLPY (01 - fz(l))>
t=2 t=1

4.10 Solving for pg

ps can be solved for in a very similar fashion to pg and pg, although this is not done
explicitly in Holmes:

—

pg = (DgDS)_lD—Srvec(H(:clasir — :i:lx(l)T - x(l]:?:ir + x?x?T)HT)
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